From $\mu$-Calculus to Alternating Tree Automata using Parity Games

نویسنده

  • M. Fareed Arif
چکیده

μ-Calculus and automata on infinite trees are complementary ways of describing infinite tree languages. The correspondence between μ-Calculus and alternating tree automaton is used to solve the satisfiability and model checking problems by compiling the modal μ-Calculus formula into an alternating tree automata. Thus advocating an automaton model specially tailored for working with modal μ-Calculus. The advantage of the automaton model is its ability to deal with arbitrary branching in a much simpler way as compare to the one proposed by Janin and Walukiewicz. Both problems (i.e., model checking and satisfiability) are solved by reduction to the corresponding problems of alternating tree automata, namely to the acceptance and the non-emptiness problems, respectively. These problems, in turn, are solved using parity games where semantics of alternating tree automata is translated to a winning strategy in an appropriate parity game.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

From $μ$-Calculus to Alternating Tree Automata using Parity Games

μ-Calculus and automata on infinite trees are complementary ways of describing infinite tree languages. The correspondence between μ-Calculus and alternating tree automaton is used to solve the satisfiability and model checking problems by compiling the modal μ-Calculus formula into an alternating tree automata. Thus advocating an automaton model specially tailored for working with modal μ-Calc...

متن کامل

The Expressive Power of Epistemic $\mu$-Calculus

While the μ-calculus notoriously subsumes Alternating-time Temporal Logic (ATL), we show that the epistemic μ-calculus does not subsume ATL with imperfect information (ATLi), for the synchronous perfect-recall semantics. To prove this we first establish that jumping parity tree automata (JTA), a recently introduced extension of alternating parity tree automata, are expressively equivalent to th...

متن کامل

Parity Games and Automata for Game Logic (Extended Version)

Parikh’s game logic is a PDL-like fixpoint logic interpreted on monotone neighbourhood frames that represent the strategic power of players in determined two-player games. Game logic translates into a fragment of the monotone μ-calculus, which in turn is expressively equivalent to monotone modal automata. Parity games and automata are important tools for dealing with the combinatorial complexit...

متن کامل

Parity Games and Automata for Game Logic

Parikh’s game logic is a PDL-like fixpoint logic interpreted on monotone neighbourhood frames that represent the strategic power of players in determined two-player games. Game logic translates into a fragment of the monotone μ-calculus, which in turn is expressively equivalent to monotone modal automata. Parity games and automata are important tools for dealing with the combinatorial complexit...

متن کامل

Alternating Tree Automata, Parity Games, and Modal -Calculus

2 From Modal -Calculus to Alternating Tree Automata 4 2.1 Modal -Calculus . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1.1 Kripke Structures . . . . . . . . . . . . . . . . . . . . . . 5 2.1.2 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.1.3 Substitution . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.1.4 Semantics . . . . . . . . . . . . . . . . . . . . . ....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016